

# PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS) 

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 ELECTRO MAGNETIC FIELDS
(EEE Branch)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M)

| Q.No. |  | Questions | Marks | CO | KL |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 1 | a) | State coulomb's law and mention any two limitations | $[2 \mathrm{M}]$ | 1 | 2 |
|  | b) | What are conductors and insulators? | $[2 \mathrm{M}]$ | 2 | 1 |
|  | c) | Deduce the relation between magnetic flux, magnetic flux density? | $[2 \mathrm{M}]$ | 3 | 4 |
|  | d) | Explain Neuman's formulae? | $[2 \mathrm{M}]$ | 4 | 2 |
|  | e) | State faradays laws of electromagnetic induction? | $[2 \mathrm{M}]$ | 5 | 2 |

PART-B
Answer One Question from each UNIT (5X10=50M)

| Q.No. |  | Questions | Marks | CO | KL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UNIT-I |  |  |  |  |  |
| 2. | a) | Using Gauss law derive the expression for electric field intensity due to infinite length of line charge? | [5M] | 1 | 2 |
|  | b) | Two similar conducting spheres have charge of 2.5 nC and -0.5 nC respectively. When they are placed 4 cm apart what is the force between them. If they are brought into contact and then separated by 4 cms what is the force between them. | [5M] | 1 | 4 |
| OR |  |  |  |  |  |
| 3. | a) | Define electric field in terms of point charge and also in terms of potential, mention salient features of electric field intensity. | [5M] | 1 | 2 |
|  | b) | Two 6 nC point charges are located at $(1,0,0)$ and $(-1,0,0)$ in free space. i) Find $V$ at $\mathrm{P}(0,0, z)$ ii) Find $V$ max | [5M] | 1 | 4 |
| UNIT-II |  |  |  |  |  |
| 4. | a) | What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. | [5M] | 2 | 1 |
|  | b) | Derive the expression for Potential gradient. | [5M] | 2 | 3 |
| OR |  |  |  |  |  |
| 5 | a) | Write the Laplace's and Poisson's equations and their physical significance | [5M] | 2 | 3 |
|  | b) | Four 0.8 nC point charges are located in free space at the corners of a square 4 cm on a side. (i)Find the total potential energy stored. (ii) A fifth $0.8 \mu \mathrm{C}$ charge is installed at the centre of the square. Again, find the total energy stored. | [5M] | 2 | 4 |
| UNIT-III |  |  |  |  |  |
| 6. | a) | Find the Magnetic Field Intensity due to a straight current carrying filament. | [5M] | 3 | 2 |
|  | b) | Find $\mathbf{H}$ at the centre of an equilateral triangle loop of side 4 m carrying 5 A of current lying in $\mathrm{x}=0$ plane and the centroid lies along z axis. | [5M] | 3 | 4 |
| OR |  |  |  |  |  |
| 7. | a) | Derive Maxwell's second equation? | [5M] | 3 | 3 |


| Code No: P18EET02 |  |  | R18 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | b) | State Ampere's circuital law and prove the same. | [5M] | 3 | 3 |
| UNIT-IV |  |  |  |  |  |
| 8. | a) | Derive the expressions for the self-inductances of a solenoid and a toroid. | [5M] | 4 | 3 |
|  | b) | Two parallel current carrying conductors separated by a distance of 4 m carries current of 10 A and 15 A in opposite directions. Find the force on each conductor. Find the field intensity at mid-point between the two conductors. | [5M] | 4 | 4 |
| OR |  |  |  |  |  |
| 9. | a) | Derive the expression for the force between two finite current carrying loops. | [5M] | 4 | 3 |
|  | b) | Define and explain Scalar Magnetic potential and its limitations. | [5M] | 4 | 3 |
| UNIT-V |  |  |  |  |  |
| 10. | a) | Explain Statically and dynamically induced EMFs? | [5M] | 5 | 2 |
|  | b) | Explain Poynting Theorem and Poynting vector? | [5M] | 5 | 2 |
| OR |  |  |  |  |  |
| 11. |  | Write Maxwell's equations in (i) differential form (ii) integral form. Explain the significance of each equation with examples | [10M] | 5 | 2 |

